Effects of mood stabilizers on adult dentate gyrus-derived neural precursor cells.
نویسندگان
چکیده
Neurogenesis in the adult dentate gyrus (DG) is considered to be partly involved in the action of mood stabilizers. However, it remains unclear how mood stabilizers affect neural precursor cells in adult DG. We have established a culture system of adult rat DG-derived neural precursor cells (ADP) and have shown that lithium, a mood stabilizer, and dexamethasone, an agonist of glucocorticoid receptor, reciprocally regulate ADP proliferation. Neurogenesis constitutes not only proliferation of neural precursor cells but also apoptosis and differentiation. To develop further understanding of mood stabilizer effects on neural precursor cells in adult DG, we investigated and compared the effects of four common mood stabilizers-lithium, valproate, carbamazepine, and lamotrigine-on ADP proliferation, apoptosis, and differentiation. ADP proliferation, decreased by dexamethasone, was examined using Alamar Blue assay. Using TUNEL assay, ADP apoptosis induced by staurosporine was examined. The differentiated ADP induced by retinoic acid was characterized by immunostaining with anti-GFAP or anti-Tuj1 antibody. Lithium and valproate, but not carbamazepine and lamotrigine, recovered ADP proliferation decreased by dexamethasone. All four mood stabilizers decreased ADP apoptosis. Retinoic acid differentiated ADP into both neurons and astrocytes. Lithium and carbamazepine increased the ratio of neurons and decreased that of astrocytes. However, valproate and lamotrigine increased the ratio of astrocytes and decreased that of neurons. Therefore, these four stabilizers exhibited both common and differential effects on ADP proliferation, apoptosis, and differentiation.
منابع مشابه
Mood stabilizers commonly restore staurosporine-induced increase of p53 expression and following decrease of Bcl-2 expression in SH-SY5Y cells.
Adult neurogenesis in dentate gyrus (DG) is involved in the action mechanism of mood stabilizers. However, it is poorly understood how mood stabilizers affect adult neurogenesis in DG. Neurogenesis consists of proliferation, survival (anti-apoptosis) and differentiation of neural precursor cells in adult DG. Using in vitro culture of adult rat DG-derived neural precursor cells (ADP), we have al...
متن کاملValproate recovers the inhibitory effect of dexamethasone on the proliferation of the adult dentate gyrus-derived neural precursor cells via GSK-3β and β-catenin pathway.
Neurogenesis in the adult dentate gyrus (DG) is decreased in rodent models for mood disorders. Mood stabilizers including lithium (Li) and valproate (VPA) increase it. These increasing effects of Li and VPA on neurogenesis in adult DG are considered to be one of the therapeutic actions of Li and VPA, but their molecular mechanism remains unclear. We have already reported that Li recovers the in...
متن کاملGDNF facilitates differentiation of the adult dentate gyrus-derived neural precursor cells into astrocytes via STAT3.
While the pro-neurogenic actions of antidepressants in the adult hippocampal dentate gyrus (DG) are thought to be one of the mechanisms through which antidepressants exert their therapeutic actions, antidepressants do not increase proliferation of neural precursor cells derived from the adult DG. Because previous studies showed that antidepressants increase the expression and secretion of glial...
متن کاملO18: Role of Adult Hippocampal Neurogenesis in Anxiety Disorders
Neurogenesis occurs throughout life in several regions of the brain. In this lecture, a new sight for the role of the dentate gyrus and adult hippocampal neurogenesis in anxiety disorders will be discussed. The region that has obtained the most attention for its involvement in the neurogenesis of affective and anxiety disorders are the hippocampal and dentate gyrus. Evidence strongly suggests t...
متن کاملRadial glial cells in the adult dentate gyrus: what are they and where do they come from?
Adult neurogenesis occurs in the dentate gyrus in the mammalian hippocampus. These new neurons arise from neural precursor cells named radial glia-like cells, which are situated in the subgranular zone of the dentate gyrus. Here, we review the emerging topic of precursor heterogeneity in the adult subgranular zone. We also discuss how this heterogeneity may be established during development and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Progress in neuro-psychopharmacology & biological psychiatry
دوره 35 1 شماره
صفحات -
تاریخ انتشار 2011